Cavity Flow Control Simulations and Experiments
نویسندگان
چکیده
Feedback control is used to suppress oscillations in the subsonic flow past a rectangular cavity. A heuristic feedback law is introduced into 2D direct numerical simulations, using zero-net-mass forcing at the leading edge of the cavity and a pressure sensor at the wall, and the oscillations are reduced by −13dB. Reduced-order models are obtained from fullorder direct numerical simulations, and used to design observers to reconstruct the full flow information from a single pressure measurement at the wall, and these observers are shown to be more effective than Linear Stochastic Estimation (LSE), which is commonly used for this purpose. Initial results of a new experiment are also given, and a model for designing zero-net-mass actuators with a desired bandwidth is presented, along with experimental data which supports the model predictions.
منابع مشابه
Simulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method
Abstract Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...
متن کاملAnalysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection Molded Parts: Experiments and Simulations
Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in order to compare experimental process results with simulations. The warpage was characterized by measuring distances using a tactile coordinate measuring machine (CMM). Molding simul...
متن کاملNumerical Simulation of Partial Cavitation over Axisymmetric Bodies: VOF Method vs. Potential Flow Theory
A computational study of partial cavitation over axisymmetric bodies is presented using two numerical methods. The first method is based on the VOF technique where transient 2D Navier-Stokes equations are solved along with an equation to track the cavity interface. Next, the steady boundary element method (BEM) based on potential flow theory is presented. The results of the two methods for a di...
متن کاملExperimental Investigation of Porosity, Installation Angle, Thickness and Second Layer of Permeable Obstacles on Density Current
This study explored the effect of porosity and installation angle, thickness (dimension) and second layer of permeable obstacles on density current control and trapping in the laboratory. For this purpose, an insoluble suspended polymer and two types of groove and cavity obstacles made from plexiglass sheets were selected. The experiments were conducted with two different concentrations, five d...
متن کاملCharacterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid
The present study considers the numerical examination of an unsteady thermo-solutal mixed convection when the extra mass and heat diffusions, called as Soret and Dufour effects, were not neglected. The numerical simulations were performed in a lid-driven cavity, where the horizontal walls were kept in constant temperatures and concentrations. The vertical walls were well insulated. A finite vol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005